Submit Manuscript  

Article Details


Computational Druglikeness Assessment, Synthesis, Characterization and In vitro Biological Activity Evaluation of some Novel Mixed Metal Complexes of 2-(butan-2-ylidene) Hydrazinecarbothioamide

Author(s):

Tahmeena Khan*, Iqbal Azad, Alfred J. Lawrence, Saman Raza, Seema Joshi and Abdul Rahman Khan   Pages 1 - 22 ( 22 )

Abstract:


Aims and Objectives: The heteronuclear (mixed metal) complexes of Schiff bases have been explored as part of the coordination and bioinorganic chemistry. Five novel mixed metal complexes of (E)-2-(butan-2-ylidene) hydrazinecarbothioamide (2-butanone thiosemicarbazone) were prepared and characterized by different spectroscopic techniques. Molecular docking studies were performed with three proteins for two complexes. The toxicity potential, physicochemical properties and bioactivity scores were also predicted. The complexes were tested against three cell lines and also evaluated for their antibacterial activity.

Materials and Methods: The mixed metal complexes were prepared in 1:4 molar ratio of metal salt and ligand. OSIRIS 4.6.1 was used to assess the toxicity whereas Molinspiration 2016.03 was used to calculate the bioactivity scores and other physicochemical properties. Principal Component Analysis (PCA) was performed using the Osiris Property Explorer 4.5.1 for defining and visualizing multidimensional property spaces by assigning dimensions to numerical descriptors. Molecular docking studies were performed with three proteins. The anticancer activity was tested against MCF-7, MDA-MB-231, HepG2 and A549 cell lines using MTT assay whereas antibacterial activity was tested using disc diffusion method.

Results and Conclusion: The melting points of the complexes were as high as >3500C, indicating high thermal stability. [CuZn(C5H11N3S)4(SO4)2] exhibited minimum energies against the selected proteins. The bioactivity scores of the complexes were between -0.50 and 0.0. All the prepared complexes showed negative Ames score predicted their non-carcinogenic nature. Against A549 [CuZn(C5H11N3S)4(SO4)2], [CoZn(C5H11N3S)4(SO4)Cl2] and [FeZn(C5H11N3S)4(SO4)2] showed potential in vitro activity. IC50 of these three complexes were 19.69, 37.73 and 38.4 respectively. Against MCF-7, [FeCu(C5H11N3S)4(SO4)2] had IC50 value 53.5. Whereas, against HepG2 [CoZn(C5H11N3S)4(SO4)Cl2] was active having IC50 value 61.8. [CoZn(C5H11N3S)4(SO4)Cl2], [FeCu(C5H11N3S)4(SO4)2] and [FeCo(C5H11N3S)4(SO4)Cl2] were active against S. aureus in the concentration range 2-20 mg/mL. The complexes showed improved biological activity as compared to the monometallic complexes of the same ligand.

Keywords:

Mixed-Metal, Docking, Breast cancer, HepG-2, antibacterial, ADMET

Affiliation:

Department of Chemistry, Integral University, Lucknow 226026, U.P., Department of Chemistry, Integral University, Lucknow 226026, U.P., Department of Chemistry, Isabella Thoburn College, Lucknow 226007, U.P., Department of Chemistry, Isabella Thoburn College, Lucknow 226007, U.P., Department of Chemistry, Isabella Thoburn College, Lucknow 226007, U.P., Department of Chemistry, Integral University, Lucknow 226026, U.P.



Read Full-Text article